4.9 Problems

Problem 1. Use Composite Simpson's rule and the given value of n to approximate the following improper integrals:

1. $\int_{0}^{1} x^{-1 / 4} \sin (x) d x, n=4$
2. $\int_{0}^{1} \frac{e^{2 x}}{x^{2 / 5}} d x, n=6$

Problem 2. Use the transformation $t=x^{-1}$ and the composite Simpson's rule for $n=4$ to compute:

$$
\int_{1}^{\infty} \frac{1}{x^{2}+9} d x
$$

5.1 Problems

Problem 3. Use Theorem 5.4 to show that the following initial-value problems have a unique solution, and find the solution:

1. $y^{\prime}=y \cos (t), 0 \leq t \leq 1, y(0)=1$
2. $y^{\prime}=-\frac{2}{t} y+t^{2} e^{t}, 1 \leq t \leq 2, y(1)=\sqrt{2} e$

Problem 4. Show that the given equation implicitly defines a solution. Approximate $y(2)$ using Newton's method:

$$
y^{\prime}=-\frac{y^{3}+y}{\left(3 y^{2}+1\right) t}
$$

for $1 \leq t \leq 2, y(1)=1 . y^{3} t+y t=2$

