4.9 Problems

Problem 1. Use Composite Simpson's rule and the given value of n to approximate the following improper integrals:

- 1. $\int_0^1 x^{-1/4} \sin(x) dx$, n = 4
- 2. $\int_0^1 \frac{e^{2x}}{x^{2/5}} dx, n = 6$

Problem 2. Use the transformation $t = x^{-1}$ and the composite Simpson's rule for n = 4 to compute:

$$\int_1^\infty \frac{1}{x^2 + 9} dx$$

5.1 Problems

Problem 3. Use Theorem 5.4 to show that the following initial-value problems have a unique solution, and find the solution:

- 1. $y' = y \cos(t), \ 0 \le t \le 1, \ y(0) = 1$
- 2. $y' = -\frac{2}{t}y + t^2 e^t$, $1 \le t \le 2$, $y(1) = \sqrt{2}e^{-\frac{1}{t}}$

Problem 4. Show that the given equation implicitly defines a solution. Approximate y(2) using Newton's method:

$$y' = -\frac{y^3 + y}{(3y^2 + 1)t}$$

for $1 \le t \le 2$, y(1) = 1. $y^3t + yt = 2$